
TWMS Jour. Pure Appl. Math., V.2, N.1, 2011, pp.66-73

ON A HEIGHT OF SMOOTH FUNCTIONS WITH MULTIPLE
COMPONENTS*

I. A. IKROMOV1, A. SOLEEV1

Abstract. In the paper we consider estimates for height of the smooth phase function which

is a product of few smooth functions. We prove that the height of functions is not large than

sum of heights of its factors and show that it is strictly less than sum of heights of factors for

some class of functions.
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1. Introduction

In the paper we consider relation between the height of factors and the hight the function
which is product of the factors. A.N. Varchenko [11] solving the problem proposed by V.I.
Arnold [1] proved the existence of so-called adapted coordinates system for the wide class of
analytic functions of two-variables. Moreover, he states that such coordinates system exist for
arbitrary analytic functions (see [3]). Later, an analog of Varchenko Theorem is proved for
arbitrary analytic functions by D.H. Phong, J. A. Shtrum and E.M. Stein [9]. Note that for
adapted coordinates system ”distance” between the origin and the Newton’s polygon defines the
sharp behavior of the oscillatory integrals. A.N. Varchenko showed that for general functions of
n ≥ 3 variables such connection does not exist. Although H. Schultz [10] showed that for finite
linear type smooth convex functions an analogical coordinates system exists. Moreover, one
can show that an analog of such kind of coordinates system exists for arbitrary convex analytic
functions [8].

Note that the behavior of the oscillatory integrals with smooth phase functions may be much
more complicated than the behavior of oscillatory integrals with analytic phase functions (for
behavior of oscillatory integrals with analytic phase functions (see. [2]). Nevertheless, an analog
of adapted coordinates system exists for smooth functions of two variables [6]. Such coordinates
systems allow to obtain ”almost” sharp estimates for oscillatory integrals with smooth phase
functions.

In this paper we consider smooth function which is a product of smooth factors. We obtain
an estimate for the height of the function by using of sum of heights of its factors. Note that in
some cases the height of function is strictly less than sum of heights of its factors.

Such kind of estimates are important in some problems connected to oscillatory integrals and
also in investigation of so-called contact index of functions [7].
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2. Some notation and definitions

Following [3] and [11] we introduce some notations. Let Z+ ⊂ IR+ ⊂ IR be the set of
all nonnegative integers, all nonnegative real numbers, and all real numbers respectively. Let
K ⊂ Zn

+. Newton polyhedron of a set K is defined by the convex hull in IRn
+ of the set

∪k∈K(k + IRn
+).

Let f be a smooth function in a neighborhood of zero. Consider the Taylor series of this
function centered at the origin

fx ≈
∑

k∈Zn
+

ckx
k, cn ∈ IR.

Let us write supp(fx) = {k ∈ Zn
+ \ {0} : ck 6= 0}.

Newton’s polyhedron of a Taylor series of f is defined by Newton’s polyhedron of the set
supp(fx). For practical construction of the Newton’s polyhedra see [4].

Let us specify a coordinate system in IRn and denote by fx the Taylor series of the function
f in this coordinates system. Let us denote by d a coordinate of intersection of the straight line
x1 = · · · = xn = d, d ∈ IR, and the boundary of the Newton’s polyhedron. This number will
be called a distance between Newton’s polyhedron and the origin. The distance is denoted by
d(x). A principal face is the face of minimal dimension containing the point (d(x), . . . , d(x)).

Let f be as above and x = (x1, . . . , xn) be local coordinates system at the origin in IRn. Let
fx be Taylor series of f centered at the origin and d(x) be the distance between the origin and
Newton’s polyhedron N(fx). Let us write h(f) = sup{d(x)}, where ”supremum” is taken over
the set of all local smooth coordinates systems x at the origin. The number h(f) is called to
be a height of the function f [11]. The local coordinates system is called to be adapted to the
phase function f if h(f) = d(x).

As noted before the sharp behavior of two-dimensional oscillatory integrals defines by the
height of the phase function. But, the polynomial function constructed by A.N. Varchenko
shows that in general for n ≥ 3 the ”height” is useless to define the sharp behavior of oscillatory
integrals. On the other hand the height gives the sharp behavior for oscillatory integrals with
smooth finite linear type convex functions [10] or with arbitrary convex analytic phase functions
[8].

3. The main results

Let f1, f2, . . . , fk be smooth functions in R2, satisfying the conditions: fl(0) = 0, ∇fl(0) =
0 (l = 1, . . . , k). We assume that, for each l function fl has a finite type at the origin. This
means that for some positive integer N ≥ 2 it holds the relation dNfl(0) 6= 0.

Then the height of the function fl is well-defined [6] and also we can define a height for the
function

f(x) := f1(x) . . . fk(x).

Theorem 3.1. The following estimate

h(f) ≤ h(f1) + · · ·+ h(fk) (1)

holds.

Remark 3.1. Note that in general the relation 1 is strict inequality. We can consider the
simple example: f(x) = f1(x)f2(x), where f1(x) = x2

1 and f2(x) = x2
2. We have h(f1) =

h(f2) = h(f) = 2 for this example.
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Proof. As we noted before the height of the function is defined by the distance between the
origin and the Newton’s polygon constructed in adapted coordinates system. But, for the proof
of the Theorem 3.1 we use another property of the height of smooth functions which proved in
[7]. The height can be defined by the following relation

h(f) = inf{p : there exists U such, that
∫

U

dx

|f(x)|1/p
< +∞}. (2)

The relation (2) follows from the results proved in the papers [11] for analytic functions without
multiple components and [9] for arbitrary analytic functions.

Let α be a fixed number belonging to the interval (0, 1) and d be a number defined by

d :=
1
α

k∑

l=1

hl,

where hl := h(fl), h := h(f).
We show that the inequality d ≥ h holds. Indeed, by using the generalized Hölder’s inequality

we get
∫

U

dx

|f(x)|1/d
≤

k∏

l=1

(∫

U

dx

|f(x)|α/hl

)ql

, (3)

where

ql :=
1
hl

k∑

j=1

hj .

Note that
k∑

l=1

1
ql

= 1.

Since it holds the inequality hl < hl/α for any l, then the left hand side of the inequality (3) is
a finite number. Therefore we have the convergent integrals in right hand side of the inequality
(3). Now due to the relations (2) we have: d ≥ h(f). Since α is any fixed number from the
interval (0, 1), we obtain the desired inequality.

¤

Let f be a function defined by f = f1f2, where f1, f2 are smooth functions in R2, satisfying
the conditions: fl(0) = 0, ∇fl(0) = 0 (l = 1, 2).

Theorem 3.2. If local adapted coordinates system to both functions f1, f2 simultaneously does
not exist, then the following inequality

h(f) < h(f1) + h(f2) (4)

holds.

Proof. Due to results of the papers [11], [9], [6] there exists adapted to f coordinates system.
Let (x1, x2) be some adapted to f coordinates system. By conditions of the Theorem 3.2 the
coordinates are not adapted at least for one of the factors. We suppose that the principal face
of Newton polygon of the function f lies on the line given by the equation κ1t1 + κ2t2 = 1 in
addition without loss of generality we may assume κ2 ≥ κ1.

First, we suppose that κ1 > 0. Then f, f1, f2 can be written in the form

f(x1, x2) = P (x1, x2) + R(x1, x2), fl(x1, x2) = Pl(x1, x2) + Rl(x1, x2), (l = 1, 2), (5)
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where P is a weighted homogeneous polynomial of degree one with respect to weights (κ1, κ2),
which corresponds to the principal edge of Newton’s polygon of the function f , and P1, P2 are
weighted homogeneous polynomials with respect to the same weights of degree α1, α2 respec-
tively, defined by Taylor series of the functions f1, f2. Since P is a weighted homogeneous
polynomial of degree one and P = P1P2 then we have α1 + α2 = 1.

Note that some of the polynomials P1, P2 may not correspond to the principal face of Newton’s
polygon of the associated function.

If the principal face of Newton’s polygon of the function f1 does not lie on the line defined by
{(t1, t2) : κ1t1 + κ2t2 = α1 < 1}, then we have d1 > α1

|κ| for the distance d1 between the origin
and Newton’s polygon. Also we have the inequality d2 ≥ α2

|κ| . Consequently,

h(f1) + h(f2) ≥ d1 + d2 >
α1 + α2

|κ| =
1
|κ| = h.

The last inequality holds for the case when the principal face of Newton’s polygon of the function

f2 does not lie on the line {(t1, t2) : κ1t1 + κ2t2 = α2 < 1}.
Thus the inequality (3.1) stated in the Theorem 3.2 is proved in the considered case.
The remaining case the principal faces of Newton’s polygons of the functions f1 and f2 lie on

the lines {(t1, t2) : κ1t1 + κ2t2 = α1} and {(t1, t2) : κ1t1 + κ2t2 = α2} respectively.
Then for the distance between the origin and Newton polygon we have: dl = αl

|κ| (l = 1, 2).
Note that the coordinates system does not adapted at least for one of the functions. Then

without loss of generality we may assume that h(f1) > d1, in addition h(f2) ≥ d2. Thus, we get
the inequality

h(f1) + h(f2) > d1 + d2 =
α1 + α2

|κ| =
1
|κ| = h.

The last inequality finishes a proof of the Theorem 3.2 for the case when the principal face of
the Newton polygon of the function f is a compact set in adapted coordinates system.

Now, suppose that the principal face of Newton’s polygon of the function f is unbounded and
it lies on the line given by the equation κ2t2 = 1. Denote by (k1

1, k1
2) and (k2

1, k2
2) the points

with minimal k1
2 and k2

2 living on the Newton’s diagrams of the functions f1 and f2 respectively.
Then obviously we have kl

2 ≤ d(fl)(l = 1, 2), and also (k1
1 + k2

1, k1
2 + k2

2) ∈ N(f).
Since

N(f) ⊂ {(t1, t2) : t2 ≥ 1
κ2
},

then k1
2 + k2

2 ≥ 1/κ2. Consequently,

h(f) =
1
κ2
≤ k1

2 + k2
2 ≤ d(f1) + d(f2) < h(f1) + h(f2).

Note that the coordinates system are not adapted at least for one of the functions f1, f2.
Therefore at least for one of that functions the principal face does not lie on line given by
an analogical equation. Because, if the principal face of Newton’s polygon of the function is
unbounded then the coordinates system are adapted.

Suppose the principal face of the function f1 is unbounded. Then we know that the coordinates
system are adapted to f1 (see [11] and also [6]). Therefore by our condition the coordinates
system are not adapted to the function f2. Then it is easy to see that the following inequality

h(f) ≤ h(f1) + d2 < h(f1) + h(f2)

holds.
¤
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Corollary 3.1. If the adapted coordinates system simultaneously to the functions f1, f2, . . . , fk

do not exist then the following inequality

h(f1, f2, . . . , fk) < h(f1) + h(f2) + · · ·+ h(fk) (6)

holds.

Theorem 3.3. If local coordinates system do not adapted to the function f then the following
inequality

h(xm
1 xn

2f) < h(f) + max{m, n}. (7)

holds.

Remark 3.2. Note that the Theorem 3.3 does not follow from the Theorem 3.2.

Proof. First, we consider the case m = 0 and n ≥ 1. Then the Newton’s polygon of the function
xn

2f coincides with the shifted Newton’s polygon of the function f by the vector (0, n) e.g.
N(xn

2f) = (0, n) + N(f). Since the given coordinates system do not adapted to f , then due to
[6] the principal face of Newton’s polygon is a compact edge. Suppose that the principal face
lies on the line L := {(t1, t2) : t1κ1 + t2κ2 = 1}.

If the principal face of Newton’s polygon N(xn
2f) does not lie on the line L1 := (0, n) + L

then it is easy to see that the coordinates system are adapted to xn
2f , therefore we have the

inequality m(P ) ≤ dx < n + dx for the weighted homogeneous polynomial P associated to the
principal face of the Newton’s polygon of the function xn

2f (see [9]).
Assume the principal face of the Newton’s polygon N(xn

2f) lies on the line L′ := {(t1, t2) :
t1κ

′
1 + t2κ

′
2 = 1 + nκ′2}. Then we have κ′1 > 0 κ′1 + κ′2 ≥ κ1 + κ2. Consequently,

h(xn
2f) = d(xn

2f) =
1 + nκ′2
κ′1 + κ′2

<
1

κ′1 + κ′2
+ n <

1
κ1 + κ2

+ n < h(f) + n.

Thus, the coordinates system are adapted to the function xn
2f , and we have the estimate

d(xn
1f) < d(f) + n < h(f) + n.

It remains to consider the case when the given coordinates system do not adapted to the
function xn

2f . Then the principal face of N(xn
2f) lies on the line L := {(t1, t2) : t1κ1 + t2κ2 =

1 + nκ2}.
First, we consider the case κ1 ≥ κ2. Then due to [11], (see [6] for the smooth case) there

exists an analytic (smooth function ϕ(x2) such that the new coordinates system given by change
of variables x1 − ϕ(x2) 7→ x1, x2 7→ x2 are adapted to the functionxn

2f . In addition the form
of the function is invariant up to such change of variables. Thus we reduce our problem to the
considered case.

Remark 3.3. Note that the required estimate holds without any condition on the function f in
the case κ1 ≥ κ2.

Now we consider the case κ1 ≤ κ2. Then due to [11](for the case of smooth functions see [6])
there exists an analytic (smooth) function ϕ(x1) such that the new coordinates system given by
change of variables x1 7→ x1, x2−ϕ(x1) 7→ x2 are adapted to the function xn

2f . Moreover, ϕ(x1)
can be developed to the formal Taylor series

ϕ(x1) = c1x
k1
1 + . . . .

If the principal face of Newton’s polygon of the new function f1(x1, x2) := (x2−ϕ(x1))nf(x1, x2−
ϕ(x1)) lies on the line t1κ

′
1 + t2κ

′
2 = 1, then k1 < κ′2/κ′1 [6].
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Now, we write the Taylor series for the functions (x2−ϕ(x1))n and f(x1, x2−ϕ(x1)) by using
the weights (k′1, κ′2) as a result we have

(x2 − ϕ(x1))n = cn
1xnk1

1 + . . . , f(x1, x2 − ϕ(x1)) = p(x1, x2) + . . . ,

where p(x1, x2) is a weighted homogeneous polynomial function with degree α. Then we get

h(f1) =
1

κ′1 + κ′2
=

nk1κ
′
1 + α

κ′1 + κ′2
<

nκ′2
κ′1 + κ′2

+
α

κ′1 + κ′2
≤ n + h(f).

The case m = 0 can be considered by the analogical arguments. Thus in the case m = 0 and
n = 0 the statement of the Theorem 3.3 is proved.

Now, we consider the case m ≥ 1 and n ≥ 1. Suppose, m = n ≥ 1. The general case follows
from that case by using the Theorem 3.1.

Let the given coordinates system are adapted to the function f1(x1, x2) := (x2x1)nf(x1, x2).
So they are not adapted to the function f(x1, x2), then we get

h(f1) = d(f1) = n + d(f) < n + h(f).

Finally, we suppose that the given coordinates system do not adapted to the function f1(x1, x2)
and the principal face of the Newton’s polygon of the function coincides with the shifted to
(n, n) principal face of the f(x1, x2). Therefore, it lies on the line

L = (n, n) + {(t1, t2) : t1κ1 + t2κ2 = 1}.
Without loss of generality, we may assume that κ2 ≥ κ1. Then κ2/κ1 is a positive integer number.
Consequently, due to [11](for smooth case see [6]) there exists an analytic (smooth) function
ϕ(x1) such that the new coordinates system given by change of variables x1 7→ x1, x2−ϕ(x1) 7→
x2 are adapted to the function (x1x2)nf . We write the Taylor (formal Taylor) series for the
function ϕ(x1) and have

ϕ(x1) = c1x
k1
1 + . . . ,

If the principal face of the Newton’s polygon of the function

f1(x1, x2) := (x1(x2 − ϕ(x1)))nf(x1, x2 − ϕ(x1))

lies on the line t1κ
′
1 + t2κ

′
2 = 1 then k1 < κ′2/κ′1 (see [6]).

Now, we write the Taylor development for the functions (x1(x2−ϕ(x1)))n and f(x1, x2−ϕ(x1))
corresponding to the weights (k′1, κ′2) and have

(x1(x2 − ϕ(x1)))n = cn
1xnk1+n

1 + . . . , f(x1, x2 − ϕ(x1)) = p(x1, x2) + . . . ,

where p(x1, x2) is a weighted homogeneous polynomial of degree α. Then we have

h(f1) =
1

κ′1 + κ′2
=

(nk1 + n)κ′1 + α

κ′1 + κ′2
<

nκ′2 + nκ′1
κ′1 + κ′2

+
α

κ′1 + κ′2
≤ n + h(f).

Therefore, we get the required estimate for the case m = n ≥ 1. The general case follows from
the obtained results by using the Corollary 3.

¤
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